MakeItFrom.com
Menu (ESC)

C94400 Bronze vs. C14180 Copper

Both C94400 bronze and C14180 copper are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 80% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C94400 bronze and the bottom bar is C14180 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
120
Elongation at Break, % 18
15
Poisson's Ratio 0.35
0.34
Shear Modulus, GPa 37
43
Tensile Strength: Ultimate (UTS), MPa 220
210
Tensile Strength: Yield (Proof), MPa 110
130

Thermal Properties

Latent Heat of Fusion, J/g 180
210
Maximum Temperature: Mechanical, °C 150
200
Melting Completion (Liquidus), °C 940
1080
Melting Onset (Solidus), °C 790
1080
Specific Heat Capacity, J/kg-K 350
390
Thermal Conductivity, W/m-K 52
370
Thermal Expansion, µm/m-K 19
17

Otherwise Unclassified Properties

Base Metal Price, % relative 32
31
Density, g/cm3 9.1
9.0
Embodied Carbon, kg CO2/kg material 3.4
2.6
Embodied Energy, MJ/kg 54
41
Embodied Water, L/kg 390
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33
28
Resilience: Unit (Modulus of Resilience), kJ/m3 60
69
Stiffness to Weight: Axial, points 6.1
7.2
Stiffness to Weight: Bending, points 17
18
Strength to Weight: Axial, points 6.8
6.5
Strength to Weight: Bending, points 9.0
8.8
Thermal Diffusivity, mm2/s 17
110
Thermal Shock Resistance, points 8.3
7.4

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0 to 0.010
Antimony (Sb), % 0 to 0.8
0
Copper (Cu), % 76.1 to 84
99.9 to 100
Iron (Fe), % 0 to 0.15
0
Lead (Pb), % 9.0 to 12
0 to 0.020
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.050
0 to 0.075
Silicon (Si), % 0 to 0.0050
0
Sulfur (S), % 0 to 0.080
0
Tin (Sn), % 7.0 to 9.0
0
Zinc (Zn), % 0 to 0.8
0