MakeItFrom.com
Menu (ESC)

C94700 Bronze vs. 206.0 Aluminum

C94700 bronze belongs to the copper alloys classification, while 206.0 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C94700 bronze and the bottom bar is 206.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
71
Elongation at Break, % 7.9 to 32
8.4 to 12
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 43
27
Tensile Strength: Ultimate (UTS), MPa 350 to 590
330 to 440
Tensile Strength: Yield (Proof), MPa 160 to 400
190 to 350

Thermal Properties

Latent Heat of Fusion, J/g 200
390
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 1030
650
Melting Onset (Solidus), °C 900
570
Specific Heat Capacity, J/kg-K 380
880
Thermal Conductivity, W/m-K 54
120
Thermal Expansion, µm/m-K 17
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
33
Electrical Conductivity: Equal Weight (Specific), % IACS 12
99

Otherwise Unclassified Properties

Base Metal Price, % relative 34
11
Density, g/cm3 8.8
3.0
Embodied Carbon, kg CO2/kg material 3.5
8.0
Embodied Energy, MJ/kg 56
150
Embodied Water, L/kg 350
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41 to 89
24 to 49
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 700
270 to 840
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
46
Strength to Weight: Axial, points 11 to 19
30 to 40
Strength to Weight: Bending, points 13 to 18
35 to 42
Thermal Diffusivity, mm2/s 16
46
Thermal Shock Resistance, points 12 to 21
17 to 23

Alloy Composition

Aluminum (Al), % 0 to 0.0050
93.3 to 95.3
Antimony (Sb), % 0 to 0.15
0
Copper (Cu), % 85 to 90
4.2 to 5.0
Iron (Fe), % 0 to 0.25
0 to 0.15
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0
0.15 to 0.35
Manganese (Mn), % 0 to 0.2
0.2 to 0.5
Nickel (Ni), % 4.5 to 6.0
0 to 0.050
Phosphorus (P), % 0 to 0.050
0
Silicon (Si), % 0 to 0.0050
0 to 0.1
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 4.5 to 6.0
0 to 0.050
Titanium (Ti), % 0
0.15 to 0.3
Zinc (Zn), % 1.0 to 2.5
0 to 0.1
Residuals, % 0
0 to 0.15