MakeItFrom.com
Menu (ESC)

C94700 Bronze vs. 6065 Aluminum

C94700 bronze belongs to the copper alloys classification, while 6065 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C94700 bronze and the bottom bar is 6065 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
68
Elongation at Break, % 7.9 to 32
4.5 to 11
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 43
26
Tensile Strength: Ultimate (UTS), MPa 350 to 590
310 to 400
Tensile Strength: Yield (Proof), MPa 160 to 400
270 to 380

Thermal Properties

Latent Heat of Fusion, J/g 200
400
Maximum Temperature: Mechanical, °C 190
180
Melting Completion (Liquidus), °C 1030
640
Melting Onset (Solidus), °C 900
590
Specific Heat Capacity, J/kg-K 380
890
Thermal Conductivity, W/m-K 54
170
Thermal Expansion, µm/m-K 17
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
43
Electrical Conductivity: Equal Weight (Specific), % IACS 12
140

Otherwise Unclassified Properties

Base Metal Price, % relative 34
11
Density, g/cm3 8.8
2.8
Embodied Carbon, kg CO2/kg material 3.5
8.4
Embodied Energy, MJ/kg 56
150
Embodied Water, L/kg 350
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41 to 89
17 to 34
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 700
540 to 1040
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
49
Strength to Weight: Axial, points 11 to 19
31 to 40
Strength to Weight: Bending, points 13 to 18
36 to 43
Thermal Diffusivity, mm2/s 16
67
Thermal Shock Resistance, points 12 to 21
14 to 18

Alloy Composition

Aluminum (Al), % 0 to 0.0050
94.4 to 98.2
Antimony (Sb), % 0 to 0.15
0
Bismuth (Bi), % 0
0.5 to 1.5
Chromium (Cr), % 0
0 to 0.15
Copper (Cu), % 85 to 90
0.15 to 0.4
Iron (Fe), % 0 to 0.25
0 to 0.7
Lead (Pb), % 0 to 0.1
0 to 0.050
Magnesium (Mg), % 0
0.8 to 1.2
Manganese (Mn), % 0 to 0.2
0 to 0.15
Nickel (Ni), % 4.5 to 6.0
0
Phosphorus (P), % 0 to 0.050
0
Silicon (Si), % 0 to 0.0050
0.4 to 0.8
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 4.5 to 6.0
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 1.0 to 2.5
0 to 0.25
Zirconium (Zr), % 0
0 to 0.15
Residuals, % 0
0 to 0.15