MakeItFrom.com
Menu (ESC)

C94700 Bronze vs. AISI 301 Stainless Steel

C94700 bronze belongs to the copper alloys classification, while AISI 301 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C94700 bronze and the bottom bar is AISI 301 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 7.9 to 32
7.4 to 46
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
77
Tensile Strength: Ultimate (UTS), MPa 350 to 590
590 to 1460
Tensile Strength: Yield (Proof), MPa 160 to 400
230 to 1080

Thermal Properties

Latent Heat of Fusion, J/g 200
280
Maximum Temperature: Mechanical, °C 190
840
Melting Completion (Liquidus), °C 1030
1420
Melting Onset (Solidus), °C 900
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 54
16
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 12
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 34
13
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 3.5
2.7
Embodied Energy, MJ/kg 56
39
Embodied Water, L/kg 350
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41 to 89
99 to 300
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 700
130 to 2970
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 11 to 19
21 to 52
Strength to Weight: Bending, points 13 to 18
20 to 37
Thermal Diffusivity, mm2/s 16
4.2
Thermal Shock Resistance, points 12 to 21
12 to 31

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.15
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 85 to 90
0
Iron (Fe), % 0 to 0.25
70.7 to 78
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.2
0 to 2.0
Nickel (Ni), % 4.5 to 6.0
6.0 to 8.0
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.050
0 to 0.045
Silicon (Si), % 0 to 0.0050
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.030
Tin (Sn), % 4.5 to 6.0
0
Zinc (Zn), % 1.0 to 2.5
0
Residuals, % 0 to 1.3
0