MakeItFrom.com
Menu (ESC)

C94700 Bronze vs. AISI 403 Stainless Steel

C94700 bronze belongs to the copper alloys classification, while AISI 403 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C94700 bronze and the bottom bar is AISI 403 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 7.9 to 32
16 to 25
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
76
Tensile Strength: Ultimate (UTS), MPa 350 to 590
530 to 780
Tensile Strength: Yield (Proof), MPa 160 to 400
280 to 570

Thermal Properties

Latent Heat of Fusion, J/g 200
270
Maximum Temperature: Mechanical, °C 190
740
Melting Completion (Liquidus), °C 1030
1450
Melting Onset (Solidus), °C 900
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 54
28
Thermal Expansion, µm/m-K 17
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 12
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 34
6.5
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 3.5
1.9
Embodied Energy, MJ/kg 56
27
Embodied Water, L/kg 350
99

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41 to 89
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 700
210 to 840
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 11 to 19
19 to 28
Strength to Weight: Bending, points 13 to 18
19 to 24
Thermal Diffusivity, mm2/s 16
7.6
Thermal Shock Resistance, points 12 to 21
20 to 29

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.15
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
11.5 to 13
Copper (Cu), % 85 to 90
0
Iron (Fe), % 0 to 0.25
84.7 to 88.5
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.2
0 to 1.0
Nickel (Ni), % 4.5 to 6.0
0 to 0.6
Phosphorus (P), % 0 to 0.050
0 to 0.040
Silicon (Si), % 0 to 0.0050
0 to 0.5
Sulfur (S), % 0 to 0.050
0 to 0.030
Tin (Sn), % 4.5 to 6.0
0
Zinc (Zn), % 1.0 to 2.5
0
Residuals, % 0 to 1.3
0