MakeItFrom.com
Menu (ESC)

C94700 Bronze vs. ASTM A182 Grade F122

C94700 bronze belongs to the copper alloys classification, while ASTM A182 grade F122 belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C94700 bronze and the bottom bar is ASTM A182 grade F122.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 7.9 to 32
23
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
76
Tensile Strength: Ultimate (UTS), MPa 350 to 590
710
Tensile Strength: Yield (Proof), MPa 160 to 400
450

Thermal Properties

Latent Heat of Fusion, J/g 200
270
Maximum Temperature: Mechanical, °C 190
600
Melting Completion (Liquidus), °C 1030
1490
Melting Onset (Solidus), °C 900
1440
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 54
24
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
10
Electrical Conductivity: Equal Weight (Specific), % IACS 12
12

Otherwise Unclassified Properties

Base Metal Price, % relative 34
12
Density, g/cm3 8.8
8.0
Embodied Carbon, kg CO2/kg material 3.5
3.0
Embodied Energy, MJ/kg 56
44
Embodied Water, L/kg 350
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41 to 89
140
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 700
520
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 11 to 19
25
Strength to Weight: Bending, points 13 to 18
22
Thermal Diffusivity, mm2/s 16
6.4
Thermal Shock Resistance, points 12 to 21
19

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0 to 0.020
Antimony (Sb), % 0 to 0.15
0
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0
0.070 to 0.14
Chromium (Cr), % 0
10 to 11.5
Copper (Cu), % 85 to 90
0.3 to 1.7
Iron (Fe), % 0 to 0.25
81.3 to 87.7
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.2
0 to 0.7
Molybdenum (Mo), % 0
0.25 to 0.6
Nickel (Ni), % 4.5 to 6.0
0 to 0.5
Niobium (Nb), % 0
0.040 to 0.1
Nitrogen (N), % 0
0.040 to 0.1
Phosphorus (P), % 0 to 0.050
0 to 0.020
Silicon (Si), % 0 to 0.0050
0 to 0.5
Sulfur (S), % 0 to 0.050
0 to 0.010
Tin (Sn), % 4.5 to 6.0
0
Titanium (Ti), % 0
0 to 0.010
Tungsten (W), % 0
1.5 to 2.5
Vanadium (V), % 0
0.15 to 0.3
Zinc (Zn), % 1.0 to 2.5
0
Zirconium (Zr), % 0
0 to 0.010
Residuals, % 0 to 1.3
0