MakeItFrom.com
Menu (ESC)

C94700 Bronze vs. AWS E120C-K4

C94700 bronze belongs to the copper alloys classification, while AWS E120C-K4 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C94700 bronze and the bottom bar is AWS E120C-K4.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 7.9 to 32
17
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
73
Tensile Strength: Ultimate (UTS), MPa 350 to 590
950
Tensile Strength: Yield (Proof), MPa 160 to 400
840

Thermal Properties

Latent Heat of Fusion, J/g 200
250
Melting Completion (Liquidus), °C 1030
1460
Melting Onset (Solidus), °C 900
1410
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 54
41
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 12
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 34
3.5
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 3.5
1.7
Embodied Energy, MJ/kg 56
23
Embodied Water, L/kg 350
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41 to 89
160
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 700
1880
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 11 to 19
34
Strength to Weight: Bending, points 13 to 18
27
Thermal Diffusivity, mm2/s 16
11
Thermal Shock Resistance, points 12 to 21
28

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.15
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
0.15 to 0.65
Copper (Cu), % 85 to 90
0 to 0.35
Iron (Fe), % 0 to 0.25
92.1 to 98.4
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.2
0.75 to 2.3
Molybdenum (Mo), % 0
0.25 to 0.65
Nickel (Ni), % 4.5 to 6.0
0.5 to 2.5
Phosphorus (P), % 0 to 0.050
0 to 0.025
Silicon (Si), % 0 to 0.0050
0 to 0.8
Sulfur (S), % 0 to 0.050
0 to 0.025
Tin (Sn), % 4.5 to 6.0
0
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 1.0 to 2.5
0
Residuals, % 0
0 to 0.5