MakeItFrom.com
Menu (ESC)

C94700 Bronze vs. AWS E409Nb

C94700 bronze belongs to the copper alloys classification, while AWS E409Nb belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C94700 bronze and the bottom bar is AWS E409Nb.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 7.9 to 32
23
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
76
Tensile Strength: Ultimate (UTS), MPa 350 to 590
500
Tensile Strength: Yield (Proof), MPa 160 to 400
380

Thermal Properties

Latent Heat of Fusion, J/g 200
280
Melting Completion (Liquidus), °C 1030
1460
Melting Onset (Solidus), °C 900
1410
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 54
25
Thermal Expansion, µm/m-K 17
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 12
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 34
13
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 3.5
2.9
Embodied Energy, MJ/kg 56
42
Embodied Water, L/kg 350
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41 to 89
110
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 700
380
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 11 to 19
18
Strength to Weight: Bending, points 13 to 18
18
Thermal Diffusivity, mm2/s 16
6.8
Thermal Shock Resistance, points 12 to 21
14

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.15
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0
11 to 14
Copper (Cu), % 85 to 90
0 to 0.75
Iron (Fe), % 0 to 0.25
80.2 to 88.5
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.2
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 4.5 to 6.0
0 to 0.6
Niobium (Nb), % 0
0.5 to 1.5
Phosphorus (P), % 0 to 0.050
0 to 0.040
Silicon (Si), % 0 to 0.0050
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.030
Tin (Sn), % 4.5 to 6.0
0
Zinc (Zn), % 1.0 to 2.5
0
Residuals, % 0 to 1.3
0