MakeItFrom.com
Menu (ESC)

C94700 Bronze vs. AWS E80C-B2

C94700 bronze belongs to the copper alloys classification, while AWS E80C-B2 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C94700 bronze and the bottom bar is AWS E80C-B2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 7.9 to 32
22
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
73
Tensile Strength: Ultimate (UTS), MPa 350 to 590
630
Tensile Strength: Yield (Proof), MPa 160 to 400
530

Thermal Properties

Latent Heat of Fusion, J/g 200
260
Melting Completion (Liquidus), °C 1030
1460
Melting Onset (Solidus), °C 900
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 54
39
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 12
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 34
3.0
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 3.5
1.6
Embodied Energy, MJ/kg 56
22
Embodied Water, L/kg 350
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41 to 89
130
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 700
740
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 11 to 19
22
Strength to Weight: Bending, points 13 to 18
21
Thermal Diffusivity, mm2/s 16
11
Thermal Shock Resistance, points 12 to 21
18

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.15
0
Carbon (C), % 0
0.050 to 0.12
Chromium (Cr), % 0
1.0 to 1.5
Copper (Cu), % 85 to 90
0
Iron (Fe), % 0 to 0.25
95.3 to 97.9
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.2
0.4 to 1.0
Molybdenum (Mo), % 0
0.4 to 0.65
Nickel (Ni), % 4.5 to 6.0
0 to 0.2
Phosphorus (P), % 0 to 0.050
0 to 0.025
Silicon (Si), % 0 to 0.0050
0.25 to 0.6
Sulfur (S), % 0 to 0.050
0 to 0.030
Tin (Sn), % 4.5 to 6.0
0
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 1.0 to 2.5
0
Residuals, % 0
0 to 0.5