MakeItFrom.com
Menu (ESC)

C94700 Bronze vs. AWS E80C-B8

C94700 bronze belongs to the copper alloys classification, while AWS E80C-B8 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C94700 bronze and the bottom bar is AWS E80C-B8.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 7.9 to 32
19
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
75
Tensile Strength: Ultimate (UTS), MPa 350 to 590
620
Tensile Strength: Yield (Proof), MPa 160 to 400
540

Thermal Properties

Latent Heat of Fusion, J/g 200
270
Melting Completion (Liquidus), °C 1030
1450
Melting Onset (Solidus), °C 900
1410
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 54
25
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
9.1
Electrical Conductivity: Equal Weight (Specific), % IACS 12
11

Otherwise Unclassified Properties

Base Metal Price, % relative 34
6.5
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 3.5
2.1
Embodied Energy, MJ/kg 56
28
Embodied Water, L/kg 350
89

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41 to 89
110
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 700
740
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 11 to 19
22
Strength to Weight: Bending, points 13 to 18
21
Thermal Diffusivity, mm2/s 16
6.9
Thermal Shock Resistance, points 12 to 21
17

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.15
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
8.0 to 10.5
Copper (Cu), % 85 to 90
0 to 0.35
Iron (Fe), % 0 to 0.25
85.5 to 90.6
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.2
0.4 to 1.0
Molybdenum (Mo), % 0
0.8 to 1.2
Nickel (Ni), % 4.5 to 6.0
0 to 0.2
Phosphorus (P), % 0 to 0.050
0 to 0.025
Silicon (Si), % 0 to 0.0050
0.25 to 0.6
Sulfur (S), % 0 to 0.050
0 to 0.025
Tin (Sn), % 4.5 to 6.0
0
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 1.0 to 2.5
0
Residuals, % 0
0 to 0.5