MakeItFrom.com
Menu (ESC)

C94700 Bronze vs. EN 1.4150 Stainless Steel

C94700 bronze belongs to the copper alloys classification, while EN 1.4150 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C94700 bronze and the bottom bar is EN 1.4150 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 7.9 to 32
20
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
76
Tensile Strength: Ultimate (UTS), MPa 350 to 590
730
Tensile Strength: Yield (Proof), MPa 160 to 400
430

Thermal Properties

Latent Heat of Fusion, J/g 200
290
Maximum Temperature: Mechanical, °C 190
840
Melting Completion (Liquidus), °C 1030
1420
Melting Onset (Solidus), °C 900
1380
Specific Heat Capacity, J/kg-K 380
490
Thermal Conductivity, W/m-K 54
23
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 12
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 34
8.5
Density, g/cm3 8.8
7.6
Embodied Carbon, kg CO2/kg material 3.5
2.8
Embodied Energy, MJ/kg 56
42
Embodied Water, L/kg 350
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41 to 89
120
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 700
470
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 11 to 19
27
Strength to Weight: Bending, points 13 to 18
24
Thermal Diffusivity, mm2/s 16
6.2
Thermal Shock Resistance, points 12 to 21
27

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.15
0
Carbon (C), % 0
0.45 to 0.6
Chromium (Cr), % 0
15 to 16.5
Copper (Cu), % 85 to 90
0
Iron (Fe), % 0 to 0.25
79 to 82.8
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.2
0 to 0.8
Molybdenum (Mo), % 0
0.2 to 0.4
Nickel (Ni), % 4.5 to 6.0
0 to 0.4
Nitrogen (N), % 0
0.050 to 0.2
Phosphorus (P), % 0 to 0.050
0 to 0.030
Silicon (Si), % 0 to 0.0050
1.3 to 1.7
Sulfur (S), % 0 to 0.050
0 to 0.010
Tin (Sn), % 4.5 to 6.0
0
Vanadium (V), % 0
0.2 to 0.4
Zinc (Zn), % 1.0 to 2.5
0
Residuals, % 0 to 1.3
0