MakeItFrom.com
Menu (ESC)

C94700 Bronze vs. EN 1.4419 Stainless Steel

C94700 bronze belongs to the copper alloys classification, while EN 1.4419 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C94700 bronze and the bottom bar is EN 1.4419 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 7.9 to 32
11 to 17
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
76
Tensile Strength: Ultimate (UTS), MPa 350 to 590
660 to 1590
Tensile Strength: Yield (Proof), MPa 160 to 400
370 to 1240

Thermal Properties

Latent Heat of Fusion, J/g 200
280
Maximum Temperature: Mechanical, °C 190
790
Melting Completion (Liquidus), °C 1030
1440
Melting Onset (Solidus), °C 900
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 54
30
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 12
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 34
8.0
Density, g/cm3 8.8
7.7
Embodied Carbon, kg CO2/kg material 3.5
2.2
Embodied Energy, MJ/kg 56
30
Embodied Water, L/kg 350
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41 to 89
95 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 700
350 to 3920
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 11 to 19
24 to 57
Strength to Weight: Bending, points 13 to 18
22 to 39
Thermal Diffusivity, mm2/s 16
8.1
Thermal Shock Resistance, points 12 to 21
23 to 55

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.15
0
Carbon (C), % 0
0.36 to 0.42
Chromium (Cr), % 0
13 to 14.5
Copper (Cu), % 85 to 90
0
Iron (Fe), % 0 to 0.25
82 to 86
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.2
0 to 1.0
Molybdenum (Mo), % 0
0.6 to 1.0
Nickel (Ni), % 4.5 to 6.0
0
Phosphorus (P), % 0 to 0.050
0 to 0.040
Silicon (Si), % 0 to 0.0050
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.015
Tin (Sn), % 4.5 to 6.0
0
Zinc (Zn), % 1.0 to 2.5
0
Residuals, % 0 to 1.3
0