MakeItFrom.com
Menu (ESC)

C94700 Bronze vs. EN 1.4542 Stainless Steel

C94700 bronze belongs to the copper alloys classification, while EN 1.4542 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C94700 bronze and the bottom bar is EN 1.4542 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 7.9 to 32
5.7 to 20
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
76
Tensile Strength: Ultimate (UTS), MPa 350 to 590
880 to 1470
Tensile Strength: Yield (Proof), MPa 160 to 400
580 to 1300

Thermal Properties

Latent Heat of Fusion, J/g 200
280
Maximum Temperature: Mechanical, °C 190
860
Melting Completion (Liquidus), °C 1030
1430
Melting Onset (Solidus), °C 900
1380
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 54
16
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 12
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 34
13
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 3.5
2.7
Embodied Energy, MJ/kg 56
39
Embodied Water, L/kg 350
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41 to 89
62 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 700
880 to 4360
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 11 to 19
31 to 52
Strength to Weight: Bending, points 13 to 18
26 to 37
Thermal Diffusivity, mm2/s 16
4.3
Thermal Shock Resistance, points 12 to 21
29 to 49

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.15
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 85 to 90
3.0 to 5.0
Iron (Fe), % 0 to 0.25
69.6 to 79
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.2
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.6
Nickel (Ni), % 4.5 to 6.0
3.0 to 5.0
Niobium (Nb), % 0
0 to 0.45
Phosphorus (P), % 0 to 0.050
0 to 0.040
Silicon (Si), % 0 to 0.0050
0 to 0.7
Sulfur (S), % 0 to 0.050
0 to 0.015
Tin (Sn), % 4.5 to 6.0
0
Zinc (Zn), % 1.0 to 2.5
0
Residuals, % 0 to 1.3
0