MakeItFrom.com
Menu (ESC)

C94700 Bronze vs. EN 1.4607 Stainless Steel

C94700 bronze belongs to the copper alloys classification, while EN 1.4607 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C94700 bronze and the bottom bar is EN 1.4607 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 7.9 to 32
21
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
77
Tensile Strength: Ultimate (UTS), MPa 350 to 590
530
Tensile Strength: Yield (Proof), MPa 160 to 400
270

Thermal Properties

Latent Heat of Fusion, J/g 200
290
Maximum Temperature: Mechanical, °C 190
930
Melting Completion (Liquidus), °C 1030
1440
Melting Onset (Solidus), °C 900
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 54
18
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 12
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 34
13
Density, g/cm3 8.8
7.7
Embodied Carbon, kg CO2/kg material 3.5
2.8
Embodied Energy, MJ/kg 56
40
Embodied Water, L/kg 350
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41 to 89
91
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 700
190
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 11 to 19
19
Strength to Weight: Bending, points 13 to 18
19
Thermal Diffusivity, mm2/s 16
4.9
Thermal Shock Resistance, points 12 to 21
19

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.15
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
18.5 to 20.5
Copper (Cu), % 85 to 90
0
Iron (Fe), % 0 to 0.25
75.6 to 81.4
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.2
0 to 1.0
Nickel (Ni), % 4.5 to 6.0
0
Niobium (Nb), % 0
0 to 1.0
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0 to 0.050
0 to 0.040
Silicon (Si), % 0 to 0.0050
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.015
Tin (Sn), % 4.5 to 6.0
0
Titanium (Ti), % 0
0.15 to 0.8
Zinc (Zn), % 1.0 to 2.5
0
Residuals, % 0 to 1.3
0