MakeItFrom.com
Menu (ESC)

C94700 Bronze vs. CC331G Bronze

Both C94700 bronze and CC331G bronze are copper alloys. They have 86% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C94700 bronze and the bottom bar is CC331G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 7.9 to 32
20
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
43
Tensile Strength: Ultimate (UTS), MPa 350 to 590
620
Tensile Strength: Yield (Proof), MPa 160 to 400
240

Thermal Properties

Latent Heat of Fusion, J/g 200
230
Maximum Temperature: Mechanical, °C 190
220
Melting Completion (Liquidus), °C 1030
1060
Melting Onset (Solidus), °C 900
1000
Specific Heat Capacity, J/kg-K 380
440
Thermal Conductivity, W/m-K 54
61
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
13
Electrical Conductivity: Equal Weight (Specific), % IACS 12
14

Otherwise Unclassified Properties

Base Metal Price, % relative 34
28
Density, g/cm3 8.8
8.3
Embodied Carbon, kg CO2/kg material 3.5
3.2
Embodied Energy, MJ/kg 56
53
Embodied Water, L/kg 350
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41 to 89
97
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 700
250
Stiffness to Weight: Axial, points 7.3
7.6
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 11 to 19
21
Strength to Weight: Bending, points 13 to 18
19
Thermal Diffusivity, mm2/s 16
17
Thermal Shock Resistance, points 12 to 21
22

Alloy Composition

Aluminum (Al), % 0 to 0.0050
8.5 to 10.5
Antimony (Sb), % 0 to 0.15
0
Copper (Cu), % 85 to 90
83 to 86.5
Iron (Fe), % 0 to 0.25
1.5 to 3.5
Lead (Pb), % 0 to 0.1
0 to 0.1
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0 to 0.2
0 to 1.0
Nickel (Ni), % 4.5 to 6.0
0 to 1.5
Phosphorus (P), % 0 to 0.050
0
Silicon (Si), % 0 to 0.0050
0 to 0.2
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 4.5 to 6.0
0 to 0.2
Zinc (Zn), % 1.0 to 2.5
0 to 0.5
Residuals, % 0 to 1.3
0