MakeItFrom.com
Menu (ESC)

C94700 Bronze vs. CC767S Brass

Both C94700 bronze and CC767S brass are copper alloys. They have 64% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C94700 bronze and the bottom bar is CC767S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 7.9 to 32
34
Poisson's Ratio 0.34
0.31
Shear Modulus, GPa 43
40
Tensile Strength: Ultimate (UTS), MPa 350 to 590
430
Tensile Strength: Yield (Proof), MPa 160 to 400
150

Thermal Properties

Latent Heat of Fusion, J/g 200
180
Maximum Temperature: Mechanical, °C 190
120
Melting Completion (Liquidus), °C 1030
840
Melting Onset (Solidus), °C 900
790
Specific Heat Capacity, J/kg-K 380
390
Thermal Conductivity, W/m-K 54
110
Thermal Expansion, µm/m-K 17
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
32
Electrical Conductivity: Equal Weight (Specific), % IACS 12
36

Otherwise Unclassified Properties

Base Metal Price, % relative 34
23
Density, g/cm3 8.8
8.0
Embodied Carbon, kg CO2/kg material 3.5
2.7
Embodied Energy, MJ/kg 56
47
Embodied Water, L/kg 350
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41 to 89
110
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 700
100
Stiffness to Weight: Axial, points 7.3
7.3
Stiffness to Weight: Bending, points 18
20
Strength to Weight: Axial, points 11 to 19
15
Strength to Weight: Bending, points 13 to 18
16
Thermal Diffusivity, mm2/s 16
34
Thermal Shock Resistance, points 12 to 21
14

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0.1 to 0.8
Antimony (Sb), % 0 to 0.15
0
Copper (Cu), % 85 to 90
58 to 64
Iron (Fe), % 0 to 0.25
0 to 0.5
Lead (Pb), % 0 to 0.1
0 to 0.1
Manganese (Mn), % 0 to 0.2
0 to 0.5
Nickel (Ni), % 4.5 to 6.0
0 to 1.0
Phosphorus (P), % 0 to 0.050
0
Silicon (Si), % 0 to 0.0050
0 to 0.2
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 4.5 to 6.0
0 to 0.1
Zinc (Zn), % 1.0 to 2.5
32.8 to 41.9
Residuals, % 0 to 1.3
0