MakeItFrom.com
Menu (ESC)

C94700 Bronze vs. Grade 28 Titanium

C94700 bronze belongs to the copper alloys classification, while grade 28 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C94700 bronze and the bottom bar is grade 28 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 7.9 to 32
11 to 17
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 43
40
Tensile Strength: Ultimate (UTS), MPa 350 to 590
690 to 980
Tensile Strength: Yield (Proof), MPa 160 to 400
540 to 810

Thermal Properties

Latent Heat of Fusion, J/g 200
410
Maximum Temperature: Mechanical, °C 190
330
Melting Completion (Liquidus), °C 1030
1640
Melting Onset (Solidus), °C 900
1590
Specific Heat Capacity, J/kg-K 380
550
Thermal Conductivity, W/m-K 54
8.3
Thermal Expansion, µm/m-K 17
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 12
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 34
36
Density, g/cm3 8.8
4.5
Embodied Carbon, kg CO2/kg material 3.5
37
Embodied Energy, MJ/kg 56
600
Embodied Water, L/kg 350
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41 to 89
87 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 700
1370 to 3100
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
35
Strength to Weight: Axial, points 11 to 19
43 to 61
Strength to Weight: Bending, points 13 to 18
39 to 49
Thermal Diffusivity, mm2/s 16
3.4
Thermal Shock Resistance, points 12 to 21
47 to 66

Alloy Composition

Aluminum (Al), % 0 to 0.0050
2.5 to 3.5
Antimony (Sb), % 0 to 0.15
0
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 85 to 90
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.25
0 to 0.25
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.2
0
Nickel (Ni), % 4.5 to 6.0
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Phosphorus (P), % 0 to 0.050
0
Ruthenium (Ru), % 0
0.080 to 0.14
Silicon (Si), % 0 to 0.0050
0
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 4.5 to 6.0
0
Titanium (Ti), % 0
92.4 to 95.4
Vanadium (V), % 0
2.0 to 3.0
Zinc (Zn), % 1.0 to 2.5
0
Residuals, % 0
0 to 0.4