MakeItFrom.com
Menu (ESC)

C94700 Bronze vs. SAE-AISI 4320 Steel

C94700 bronze belongs to the copper alloys classification, while SAE-AISI 4320 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C94700 bronze and the bottom bar is SAE-AISI 4320 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 7.9 to 32
21 to 29
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
73
Tensile Strength: Ultimate (UTS), MPa 350 to 590
570 to 790
Tensile Strength: Yield (Proof), MPa 160 to 400
430 to 460

Thermal Properties

Latent Heat of Fusion, J/g 200
250
Maximum Temperature: Mechanical, °C 190
420
Melting Completion (Liquidus), °C 1030
1460
Melting Onset (Solidus), °C 900
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 54
46
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 12
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 34
3.4
Density, g/cm3 8.8
7.9
Embodied Carbon, kg CO2/kg material 3.5
1.7
Embodied Energy, MJ/kg 56
22
Embodied Water, L/kg 350
52

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41 to 89
140 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 700
480 to 560
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 11 to 19
20 to 28
Strength to Weight: Bending, points 13 to 18
19 to 24
Thermal Diffusivity, mm2/s 16
13
Thermal Shock Resistance, points 12 to 21
19 to 27

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.15
0
Carbon (C), % 0
0.17 to 0.22
Chromium (Cr), % 0
0.4 to 0.6
Copper (Cu), % 85 to 90
0
Iron (Fe), % 0 to 0.25
95.8 to 97
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.2
0.45 to 0.65
Molybdenum (Mo), % 0
0.2 to 0.3
Nickel (Ni), % 4.5 to 6.0
1.7 to 2.0
Phosphorus (P), % 0 to 0.050
0 to 0.035
Silicon (Si), % 0 to 0.0050
0.15 to 0.35
Sulfur (S), % 0 to 0.050
0 to 0.040
Tin (Sn), % 4.5 to 6.0
0
Zinc (Zn), % 1.0 to 2.5
0
Residuals, % 0 to 1.3
0