MakeItFrom.com
Menu (ESC)

C94700 Bronze vs. SAE-AISI 52100 Steel

C94700 bronze belongs to the copper alloys classification, while SAE-AISI 52100 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C94700 bronze and the bottom bar is SAE-AISI 52100 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 7.9 to 32
10 to 20
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
72
Tensile Strength: Ultimate (UTS), MPa 350 to 590
590 to 2010
Tensile Strength: Yield (Proof), MPa 160 to 400
360 to 560

Thermal Properties

Latent Heat of Fusion, J/g 200
250
Maximum Temperature: Mechanical, °C 190
430
Melting Completion (Liquidus), °C 1030
1450
Melting Onset (Solidus), °C 900
1410
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 54
47
Thermal Expansion, µm/m-K 17
12 to 13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 12
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 34
2.4
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 3.5
1.5
Embodied Energy, MJ/kg 56
20
Embodied Water, L/kg 350
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41 to 89
54 to 310
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 700
350 to 840
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 11 to 19
21 to 72
Strength to Weight: Bending, points 13 to 18
20 to 45
Thermal Diffusivity, mm2/s 16
13
Thermal Shock Resistance, points 12 to 21
19 to 61

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.15
0
Carbon (C), % 0
0.93 to 1.1
Chromium (Cr), % 0
1.4 to 1.6
Copper (Cu), % 85 to 90
0
Iron (Fe), % 0 to 0.25
96.5 to 97.3
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.2
0.25 to 0.45
Nickel (Ni), % 4.5 to 6.0
0
Phosphorus (P), % 0 to 0.050
0 to 0.025
Silicon (Si), % 0 to 0.0050
0.15 to 0.35
Sulfur (S), % 0 to 0.050
0 to 0.015
Tin (Sn), % 4.5 to 6.0
0
Zinc (Zn), % 1.0 to 2.5
0
Residuals, % 0 to 1.3
0