MakeItFrom.com
Menu (ESC)

C94700 Bronze vs. C18700 Copper

Both C94700 bronze and C18700 copper are copper alloys. They have 88% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C94700 bronze and the bottom bar is C18700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 7.9 to 32
9.0 to 9.6
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
43
Tensile Strength: Ultimate (UTS), MPa 350 to 590
290 to 330
Tensile Strength: Yield (Proof), MPa 160 to 400
230 to 250

Thermal Properties

Latent Heat of Fusion, J/g 200
210
Maximum Temperature: Mechanical, °C 190
200
Melting Completion (Liquidus), °C 1030
1080
Melting Onset (Solidus), °C 900
950
Specific Heat Capacity, J/kg-K 380
380
Thermal Conductivity, W/m-K 54
380
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
98
Electrical Conductivity: Equal Weight (Specific), % IACS 12
99

Otherwise Unclassified Properties

Base Metal Price, % relative 34
30
Density, g/cm3 8.8
9.0
Embodied Carbon, kg CO2/kg material 3.5
2.6
Embodied Energy, MJ/kg 56
41
Embodied Water, L/kg 350
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41 to 89
24 to 29
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 700
240 to 280
Stiffness to Weight: Axial, points 7.3
7.1
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 11 to 19
9.0 to 10
Strength to Weight: Bending, points 13 to 18
11 to 12
Thermal Diffusivity, mm2/s 16
110
Thermal Shock Resistance, points 12 to 21
10 to 12

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.15
0
Copper (Cu), % 85 to 90
98 to 99.2
Iron (Fe), % 0 to 0.25
0
Lead (Pb), % 0 to 0.1
0.8 to 1.5
Manganese (Mn), % 0 to 0.2
0
Nickel (Ni), % 4.5 to 6.0
0
Phosphorus (P), % 0 to 0.050
0
Silicon (Si), % 0 to 0.0050
0
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 4.5 to 6.0
0
Zinc (Zn), % 1.0 to 2.5
0
Residuals, % 0
0 to 0.5