MakeItFrom.com
Menu (ESC)

C94700 Bronze vs. C26200 Brass

Both C94700 bronze and C26200 brass are copper alloys. They have 70% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C94700 bronze and the bottom bar is C26200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 7.9 to 32
3.0 to 180
Poisson's Ratio 0.34
0.31
Shear Modulus, GPa 43
41
Tensile Strength: Ultimate (UTS), MPa 350 to 590
330 to 770
Tensile Strength: Yield (Proof), MPa 160 to 400
110 to 490

Thermal Properties

Latent Heat of Fusion, J/g 200
180
Maximum Temperature: Mechanical, °C 190
140
Melting Completion (Liquidus), °C 1030
950
Melting Onset (Solidus), °C 900
920
Specific Heat Capacity, J/kg-K 380
390
Thermal Conductivity, W/m-K 54
120
Thermal Expansion, µm/m-K 17
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
28
Electrical Conductivity: Equal Weight (Specific), % IACS 12
31

Otherwise Unclassified Properties

Base Metal Price, % relative 34
25
Density, g/cm3 8.8
8.2
Embodied Carbon, kg CO2/kg material 3.5
2.7
Embodied Energy, MJ/kg 56
45
Embodied Water, L/kg 350
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41 to 89
19 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 700
62 to 1110
Stiffness to Weight: Axial, points 7.3
7.2
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 11 to 19
11 to 26
Strength to Weight: Bending, points 13 to 18
13 to 23
Thermal Diffusivity, mm2/s 16
38
Thermal Shock Resistance, points 12 to 21
11 to 26

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.15
0
Copper (Cu), % 85 to 90
67 to 70
Iron (Fe), % 0 to 0.25
0 to 0.050
Lead (Pb), % 0 to 0.1
0 to 0.070
Manganese (Mn), % 0 to 0.2
0
Nickel (Ni), % 4.5 to 6.0
0
Phosphorus (P), % 0 to 0.050
0
Silicon (Si), % 0 to 0.0050
0
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 4.5 to 6.0
0
Zinc (Zn), % 1.0 to 2.5
29.6 to 33
Residuals, % 0
0 to 0.3