MakeItFrom.com
Menu (ESC)

C94700 Bronze vs. C85800 Brass

Both C94700 bronze and C85800 brass are copper alloys. They have 67% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C94700 bronze and the bottom bar is C85800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
100
Elongation at Break, % 7.9 to 32
15
Poisson's Ratio 0.34
0.31
Shear Modulus, GPa 43
40
Tensile Strength: Ultimate (UTS), MPa 350 to 590
380
Tensile Strength: Yield (Proof), MPa 160 to 400
210

Thermal Properties

Latent Heat of Fusion, J/g 200
170
Maximum Temperature: Mechanical, °C 190
120
Melting Completion (Liquidus), °C 1030
900
Melting Onset (Solidus), °C 900
870
Specific Heat Capacity, J/kg-K 380
380
Thermal Conductivity, W/m-K 54
84
Thermal Expansion, µm/m-K 17
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
20
Electrical Conductivity: Equal Weight (Specific), % IACS 12
22

Otherwise Unclassified Properties

Base Metal Price, % relative 34
24
Density, g/cm3 8.8
8.0
Embodied Carbon, kg CO2/kg material 3.5
2.8
Embodied Energy, MJ/kg 56
47
Embodied Water, L/kg 350
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41 to 89
48
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 700
210
Stiffness to Weight: Axial, points 7.3
7.2
Stiffness to Weight: Bending, points 18
20
Strength to Weight: Axial, points 11 to 19
13
Strength to Weight: Bending, points 13 to 18
15
Thermal Diffusivity, mm2/s 16
27
Thermal Shock Resistance, points 12 to 21
13

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0 to 0.55
Antimony (Sb), % 0 to 0.15
0 to 0.050
Arsenic (As), % 0
0 to 0.050
Copper (Cu), % 85 to 90
57 to 69
Iron (Fe), % 0 to 0.25
0 to 0.5
Lead (Pb), % 0 to 0.1
0 to 1.5
Manganese (Mn), % 0 to 0.2
0 to 0.25
Nickel (Ni), % 4.5 to 6.0
0 to 0.5
Phosphorus (P), % 0 to 0.050
0 to 0.010
Silicon (Si), % 0 to 0.0050
0 to 0.25
Sulfur (S), % 0 to 0.050
0 to 0.050
Tin (Sn), % 4.5 to 6.0
0 to 1.5
Zinc (Zn), % 1.0 to 2.5
31 to 41
Residuals, % 0
0 to 1.3