MakeItFrom.com
Menu (ESC)

C94700 Bronze vs. S34565 Stainless Steel

C94700 bronze belongs to the copper alloys classification, while S34565 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C94700 bronze and the bottom bar is S34565 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 7.9 to 32
39
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
80
Tensile Strength: Ultimate (UTS), MPa 350 to 590
900
Tensile Strength: Yield (Proof), MPa 160 to 400
470

Thermal Properties

Latent Heat of Fusion, J/g 200
310
Maximum Temperature: Mechanical, °C 190
1100
Melting Completion (Liquidus), °C 1030
1420
Melting Onset (Solidus), °C 900
1380
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 54
12
Thermal Expansion, µm/m-K 17
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 12
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 34
28
Density, g/cm3 8.8
7.9
Embodied Carbon, kg CO2/kg material 3.5
5.3
Embodied Energy, MJ/kg 56
73
Embodied Water, L/kg 350
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41 to 89
300
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 700
540
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 11 to 19
32
Strength to Weight: Bending, points 13 to 18
26
Thermal Diffusivity, mm2/s 16
3.2
Thermal Shock Resistance, points 12 to 21
22

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.15
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
23 to 25
Copper (Cu), % 85 to 90
0
Iron (Fe), % 0 to 0.25
43.2 to 51.6
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.2
5.0 to 7.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 4.5 to 6.0
16 to 18
Niobium (Nb), % 0
0 to 0.1
Nitrogen (N), % 0
0.4 to 0.6
Phosphorus (P), % 0 to 0.050
0 to 0.030
Silicon (Si), % 0 to 0.0050
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.010
Tin (Sn), % 4.5 to 6.0
0
Zinc (Zn), % 1.0 to 2.5
0
Residuals, % 0 to 1.3
0