MakeItFrom.com
Menu (ESC)

C94700 Bronze vs. S44537 Stainless Steel

C94700 bronze belongs to the copper alloys classification, while S44537 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C94700 bronze and the bottom bar is S44537 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 7.9 to 32
21
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 43
79
Tensile Strength: Ultimate (UTS), MPa 350 to 590
510
Tensile Strength: Yield (Proof), MPa 160 to 400
360

Thermal Properties

Latent Heat of Fusion, J/g 200
290
Maximum Temperature: Mechanical, °C 190
1000
Melting Completion (Liquidus), °C 1030
1480
Melting Onset (Solidus), °C 900
1430
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 54
21
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 12
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 34
19
Density, g/cm3 8.8
7.9
Embodied Carbon, kg CO2/kg material 3.5
3.4
Embodied Energy, MJ/kg 56
50
Embodied Water, L/kg 350
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41 to 89
95
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 700
320
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 11 to 19
18
Strength to Weight: Bending, points 13 to 18
18
Thermal Diffusivity, mm2/s 16
5.6
Thermal Shock Resistance, points 12 to 21
17

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0 to 0.1
Antimony (Sb), % 0 to 0.15
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
20 to 24
Copper (Cu), % 85 to 90
0 to 0.5
Iron (Fe), % 0 to 0.25
69 to 78.6
Lanthanum (La), % 0
0.040 to 0.2
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.2
0 to 0.8
Nickel (Ni), % 4.5 to 6.0
0 to 0.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0 to 0.050
0 to 0.050
Silicon (Si), % 0 to 0.0050
0.1 to 0.6
Sulfur (S), % 0 to 0.050
0 to 0.0060
Tin (Sn), % 4.5 to 6.0
0
Titanium (Ti), % 0
0.020 to 0.2
Tungsten (W), % 0
1.0 to 3.0
Zinc (Zn), % 1.0 to 2.5
0
Residuals, % 0 to 1.3
0