MakeItFrom.com
Menu (ESC)

C94800 Bronze vs. AWS ER90S-B9

C94800 bronze belongs to the copper alloys classification, while AWS ER90S-B9 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C94800 bronze and the bottom bar is AWS ER90S-B9.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 22
18
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
75
Tensile Strength: Ultimate (UTS), MPa 310
690
Tensile Strength: Yield (Proof), MPa 160
470

Thermal Properties

Latent Heat of Fusion, J/g 200
270
Melting Completion (Liquidus), °C 1030
1450
Melting Onset (Solidus), °C 900
1410
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 39
25
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 12
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 34
7.0
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 3.5
2.6
Embodied Energy, MJ/kg 56
37
Embodied Water, L/kg 350
91

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 58
110
Resilience: Unit (Modulus of Resilience), kJ/m3 110
570
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 9.8
25
Strength to Weight: Bending, points 12
22
Thermal Diffusivity, mm2/s 12
6.9
Thermal Shock Resistance, points 11
19

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0 to 0.040
Antimony (Sb), % 0 to 0.15
0
Carbon (C), % 0
0.070 to 0.13
Chromium (Cr), % 0
8.0 to 10.5
Copper (Cu), % 84 to 89
0 to 0.2
Iron (Fe), % 0 to 0.25
84.4 to 90.7
Lead (Pb), % 0.3 to 1.0
0
Manganese (Mn), % 0 to 0.2
0 to 1.2
Molybdenum (Mo), % 0
0.85 to 1.2
Nickel (Ni), % 4.5 to 6.0
0 to 0.8
Niobium (Nb), % 0
0.020 to 0.1
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0 to 0.050
0 to 0.010
Silicon (Si), % 0 to 0.0050
0.15 to 0.5
Sulfur (S), % 0 to 0.050
0 to 0.010
Tin (Sn), % 4.5 to 6.0
0
Vanadium (V), % 0
0.15 to 0.3
Zinc (Zn), % 1.0 to 2.5
0
Residuals, % 0
0 to 0.5