MakeItFrom.com
Menu (ESC)

C94800 Bronze vs. CC332G Bronze

Both C94800 bronze and CC332G bronze are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 86% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C94800 bronze and the bottom bar is CC332G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 22
22
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
43
Tensile Strength: Ultimate (UTS), MPa 310
620
Tensile Strength: Yield (Proof), MPa 160
250

Thermal Properties

Latent Heat of Fusion, J/g 200
230
Maximum Temperature: Mechanical, °C 190
220
Melting Completion (Liquidus), °C 1030
1060
Melting Onset (Solidus), °C 900
1010
Specific Heat Capacity, J/kg-K 380
440
Thermal Conductivity, W/m-K 39
45
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
11
Electrical Conductivity: Equal Weight (Specific), % IACS 12
12

Otherwise Unclassified Properties

Base Metal Price, % relative 34
29
Density, g/cm3 8.8
8.3
Embodied Carbon, kg CO2/kg material 3.5
3.4
Embodied Energy, MJ/kg 56
55
Embodied Water, L/kg 350
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 58
110
Resilience: Unit (Modulus of Resilience), kJ/m3 110
270
Stiffness to Weight: Axial, points 7.2
7.7
Stiffness to Weight: Bending, points 18
20
Strength to Weight: Axial, points 9.8
21
Strength to Weight: Bending, points 12
19
Thermal Diffusivity, mm2/s 12
12
Thermal Shock Resistance, points 11
21

Alloy Composition

Aluminum (Al), % 0 to 0.0050
8.5 to 10.5
Antimony (Sb), % 0 to 0.15
0
Copper (Cu), % 84 to 89
80 to 86
Iron (Fe), % 0 to 0.25
1.0 to 3.0
Lead (Pb), % 0.3 to 1.0
0 to 0.1
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0 to 0.2
0 to 2.0
Nickel (Ni), % 4.5 to 6.0
1.5 to 4.0
Phosphorus (P), % 0 to 0.050
0
Silicon (Si), % 0 to 0.0050
0 to 0.2
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 4.5 to 6.0
0 to 0.2
Zinc (Zn), % 1.0 to 2.5
0 to 0.5
Residuals, % 0 to 1.3
0