MakeItFrom.com
Menu (ESC)

C94800 Bronze vs. SAE-AISI 1045 Steel

C94800 bronze belongs to the copper alloys classification, while SAE-AISI 1045 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C94800 bronze and the bottom bar is SAE-AISI 1045 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 22
13 to 18
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
72
Tensile Strength: Ultimate (UTS), MPa 310
620 to 680
Tensile Strength: Yield (Proof), MPa 160
330 to 580

Thermal Properties

Latent Heat of Fusion, J/g 200
250
Maximum Temperature: Mechanical, °C 190
400
Melting Completion (Liquidus), °C 1030
1460
Melting Onset (Solidus), °C 900
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 39
51
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 12
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 34
1.8
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 3.5
1.4
Embodied Energy, MJ/kg 56
18
Embodied Water, L/kg 350
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 58
84 to 93
Resilience: Unit (Modulus of Resilience), kJ/m3 110
300 to 900
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 9.8
22 to 24
Strength to Weight: Bending, points 12
21 to 22
Thermal Diffusivity, mm2/s 12
14
Thermal Shock Resistance, points 11
20 to 22

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.15
0
Carbon (C), % 0
0.43 to 0.5
Copper (Cu), % 84 to 89
0
Iron (Fe), % 0 to 0.25
98.5 to 99
Lead (Pb), % 0.3 to 1.0
0
Manganese (Mn), % 0 to 0.2
0.6 to 0.9
Nickel (Ni), % 4.5 to 6.0
0
Phosphorus (P), % 0 to 0.050
0 to 0.040
Silicon (Si), % 0 to 0.0050
0
Sulfur (S), % 0 to 0.050
0 to 0.050
Tin (Sn), % 4.5 to 6.0
0
Zinc (Zn), % 1.0 to 2.5
0
Residuals, % 0 to 1.3
0