MakeItFrom.com
Menu (ESC)

C94800 Bronze vs. SAE-AISI 5160 Steel

C94800 bronze belongs to the copper alloys classification, while SAE-AISI 5160 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C94800 bronze and the bottom bar is SAE-AISI 5160 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 22
12 to 18
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
73
Tensile Strength: Ultimate (UTS), MPa 310
660 to 1150
Tensile Strength: Yield (Proof), MPa 160
280 to 1010

Thermal Properties

Latent Heat of Fusion, J/g 200
250
Maximum Temperature: Mechanical, °C 190
420
Melting Completion (Liquidus), °C 1030
1450
Melting Onset (Solidus), °C 900
1410
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 39
43
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 12
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 34
2.1
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 3.5
1.4
Embodied Energy, MJ/kg 56
19
Embodied Water, L/kg 350
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 58
73 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 110
200 to 2700
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 9.8
23 to 41
Strength to Weight: Bending, points 12
22 to 31
Thermal Diffusivity, mm2/s 12
12
Thermal Shock Resistance, points 11
19 to 34

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.15
0
Carbon (C), % 0
0.56 to 0.61
Chromium (Cr), % 0
0.7 to 0.9
Copper (Cu), % 84 to 89
0
Iron (Fe), % 0 to 0.25
97.1 to 97.8
Lead (Pb), % 0.3 to 1.0
0
Manganese (Mn), % 0 to 0.2
0.75 to 1.0
Nickel (Ni), % 4.5 to 6.0
0
Phosphorus (P), % 0 to 0.050
0 to 0.035
Silicon (Si), % 0 to 0.0050
0.15 to 0.35
Sulfur (S), % 0 to 0.050
0 to 0.040
Tin (Sn), % 4.5 to 6.0
0
Zinc (Zn), % 1.0 to 2.5
0
Residuals, % 0 to 1.3
0