MakeItFrom.com
Menu (ESC)

C94800 Bronze vs. S35500 Stainless Steel

C94800 bronze belongs to the copper alloys classification, while S35500 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C94800 bronze and the bottom bar is S35500 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 22
14
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
78
Tensile Strength: Ultimate (UTS), MPa 310
1330 to 1490
Tensile Strength: Yield (Proof), MPa 160
1200 to 1280

Thermal Properties

Latent Heat of Fusion, J/g 200
280
Maximum Temperature: Mechanical, °C 190
870
Melting Completion (Liquidus), °C 1030
1460
Melting Onset (Solidus), °C 900
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 39
16
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 12
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 34
16
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 3.5
3.5
Embodied Energy, MJ/kg 56
47
Embodied Water, L/kg 350
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 58
180 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 110
3610 to 4100
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 9.8
47 to 53
Strength to Weight: Bending, points 12
34 to 37
Thermal Diffusivity, mm2/s 12
4.4
Thermal Shock Resistance, points 11
44 to 49

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.15
0
Carbon (C), % 0
0.1 to 0.15
Chromium (Cr), % 0
15 to 16
Copper (Cu), % 84 to 89
0
Iron (Fe), % 0 to 0.25
73.2 to 77.7
Lead (Pb), % 0.3 to 1.0
0
Manganese (Mn), % 0 to 0.2
0.5 to 1.3
Molybdenum (Mo), % 0
2.5 to 3.2
Nickel (Ni), % 4.5 to 6.0
4.0 to 5.0
Niobium (Nb), % 0
0.1 to 0.5
Nitrogen (N), % 0
0.070 to 0.13
Phosphorus (P), % 0 to 0.050
0 to 0.040
Silicon (Si), % 0 to 0.0050
0 to 0.5
Sulfur (S), % 0 to 0.050
0 to 0.030
Tin (Sn), % 4.5 to 6.0
0
Zinc (Zn), % 1.0 to 2.5
0
Residuals, % 0 to 1.3
0