MakeItFrom.com
Menu (ESC)

C94900 Bronze vs. Grade M30H Nickel

C94900 bronze belongs to the copper alloys classification, while grade M30H nickel belongs to the nickel alloys. They have a modest 35% of their average alloy composition in common, which, by itself, doesn't mean much. There are 26 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C94900 bronze and the bottom bar is grade M30H nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
160
Elongation at Break, % 17
11
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 41
61
Tensile Strength: Ultimate (UTS), MPa 300
770
Tensile Strength: Yield (Proof), MPa 130
470

Thermal Properties

Latent Heat of Fusion, J/g 190
320
Maximum Temperature: Mechanical, °C 170
900
Melting Completion (Liquidus), °C 980
1250
Melting Onset (Solidus), °C 910
1200
Specific Heat Capacity, J/kg-K 370
440
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 14
3.3
Electrical Conductivity: Equal Weight (Specific), % IACS 14
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 32
50
Density, g/cm3 8.8
8.6
Embodied Carbon, kg CO2/kg material 3.4
7.7
Embodied Energy, MJ/kg 55
110
Embodied Water, L/kg 350
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41
75
Resilience: Unit (Modulus of Resilience), kJ/m3 72
700
Stiffness to Weight: Axial, points 6.9
10
Stiffness to Weight: Bending, points 18
21
Strength to Weight: Axial, points 9.4
25
Strength to Weight: Bending, points 11
22
Thermal Shock Resistance, points 11
27

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.3
Copper (Cu), % 79 to 81
27 to 33
Iron (Fe), % 0 to 0.3
0 to 3.5
Lead (Pb), % 4.0 to 6.0
0
Manganese (Mn), % 0 to 0.1
0 to 1.5
Nickel (Ni), % 4.0 to 6.0
57.9 to 70.3
Phosphorus (P), % 0 to 0.050
0 to 0.030
Silicon (Si), % 0 to 0.0050
2.7 to 3.7
Sulfur (S), % 0 to 0.080
0 to 0.030
Tin (Sn), % 4.0 to 6.0
0
Zinc (Zn), % 4.0 to 6.0
0
Residuals, % 0 to 0.8
0