MakeItFrom.com
Menu (ESC)

C94900 Bronze vs. C17500 Copper

Both C94900 bronze and C17500 copper are copper alloys. They have 80% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C94900 bronze and the bottom bar is C17500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 17
6.0 to 30
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 41
45
Tensile Strength: Ultimate (UTS), MPa 300
310 to 860
Tensile Strength: Yield (Proof), MPa 130
170 to 760

Thermal Properties

Latent Heat of Fusion, J/g 190
220
Maximum Temperature: Mechanical, °C 170
220
Melting Completion (Liquidus), °C 980
1060
Melting Onset (Solidus), °C 910
1020
Specific Heat Capacity, J/kg-K 370
390
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 14
24 to 53
Electrical Conductivity: Equal Weight (Specific), % IACS 14
24 to 54

Otherwise Unclassified Properties

Base Metal Price, % relative 32
60
Density, g/cm3 8.8
8.9
Embodied Carbon, kg CO2/kg material 3.4
4.7
Embodied Energy, MJ/kg 55
73
Embodied Water, L/kg 350
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41
30 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 72
120 to 2390
Stiffness to Weight: Axial, points 6.9
7.5
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 9.4
9.7 to 27
Strength to Weight: Bending, points 11
11 to 23
Thermal Shock Resistance, points 11
11 to 29

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0 to 0.2
Antimony (Sb), % 0 to 0.25
0
Beryllium (Be), % 0
0.4 to 0.7
Cobalt (Co), % 0
2.4 to 2.7
Copper (Cu), % 79 to 81
95.6 to 97.2
Iron (Fe), % 0 to 0.3
0 to 0.1
Lead (Pb), % 4.0 to 6.0
0
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 4.0 to 6.0
0
Phosphorus (P), % 0 to 0.050
0
Silicon (Si), % 0 to 0.0050
0 to 0.2
Sulfur (S), % 0 to 0.080
0
Tin (Sn), % 4.0 to 6.0
0
Zinc (Zn), % 4.0 to 6.0
0
Residuals, % 0
0 to 0.5