MakeItFrom.com
Menu (ESC)

C95200 Bronze vs. 2017A Aluminum

C95200 bronze belongs to the copper alloys classification, while 2017A aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C95200 bronze and the bottom bar is 2017A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
71
Elongation at Break, % 29
2.2 to 14
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 42
27
Tensile Strength: Ultimate (UTS), MPa 520
200 to 460
Tensile Strength: Yield (Proof), MPa 190
110 to 290

Thermal Properties

Latent Heat of Fusion, J/g 230
390
Maximum Temperature: Mechanical, °C 220
220
Melting Completion (Liquidus), °C 1050
650
Melting Onset (Solidus), °C 1040
510
Specific Heat Capacity, J/kg-K 430
880
Thermal Conductivity, W/m-K 50
150
Thermal Expansion, µm/m-K 18
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
34
Electrical Conductivity: Equal Weight (Specific), % IACS 12
100

Otherwise Unclassified Properties

Base Metal Price, % relative 28
11
Density, g/cm3 8.3
3.0
Embodied Carbon, kg CO2/kg material 3.0
8.2
Embodied Energy, MJ/kg 50
150
Embodied Water, L/kg 380
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
6.7 to 53
Resilience: Unit (Modulus of Resilience), kJ/m3 170
90 to 570
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 19
46
Strength to Weight: Axial, points 17
19 to 42
Strength to Weight: Bending, points 17
26 to 44
Thermal Diffusivity, mm2/s 14
56
Thermal Shock Resistance, points 19
8.9 to 20

Alloy Composition

Aluminum (Al), % 8.5 to 9.5
91.3 to 95.5
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 86 to 89
3.5 to 4.5
Iron (Fe), % 2.5 to 4.0
0 to 0.7
Magnesium (Mg), % 0
0.4 to 1.0
Manganese (Mn), % 0
0.4 to 1.0
Silicon (Si), % 0
0.2 to 0.8
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0
0 to 0.15