MakeItFrom.com
Menu (ESC)

C95200 Bronze vs. 6025 Aluminum

C95200 bronze belongs to the copper alloys classification, while 6025 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C95200 bronze and the bottom bar is 6025 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
70
Elongation at Break, % 29
2.8 to 10
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 42
26
Tensile Strength: Ultimate (UTS), MPa 520
190 to 240
Tensile Strength: Yield (Proof), MPa 190
68 to 210

Thermal Properties

Latent Heat of Fusion, J/g 230
410
Maximum Temperature: Mechanical, °C 220
160
Melting Completion (Liquidus), °C 1050
650
Melting Onset (Solidus), °C 1040
550
Specific Heat Capacity, J/kg-K 430
900
Thermal Conductivity, W/m-K 50
130
Thermal Expansion, µm/m-K 18
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
33
Electrical Conductivity: Equal Weight (Specific), % IACS 12
110

Otherwise Unclassified Properties

Base Metal Price, % relative 28
9.5
Density, g/cm3 8.3
2.8
Embodied Carbon, kg CO2/kg material 3.0
8.5
Embodied Energy, MJ/kg 50
150
Embodied Water, L/kg 380
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
6.0 to 15
Resilience: Unit (Modulus of Resilience), kJ/m3 170
33 to 310
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
50
Strength to Weight: Axial, points 17
19 to 24
Strength to Weight: Bending, points 17
26 to 31
Thermal Diffusivity, mm2/s 14
54
Thermal Shock Resistance, points 19
8.2 to 10

Alloy Composition

Aluminum (Al), % 8.5 to 9.5
91.7 to 96.3
Chromium (Cr), % 0
0 to 0.2
Copper (Cu), % 86 to 89
0.2 to 0.7
Iron (Fe), % 2.5 to 4.0
0 to 0.7
Magnesium (Mg), % 0
2.1 to 3.0
Manganese (Mn), % 0
0.6 to 1.4
Silicon (Si), % 0
0.8 to 1.5
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.15