MakeItFrom.com
Menu (ESC)

C95200 Bronze vs. ACI-ASTM CD6MN Steel

C95200 bronze belongs to the copper alloys classification, while ACI-ASTM CD6MN steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C95200 bronze and the bottom bar is ACI-ASTM CD6MN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 29
28
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 42
80
Tensile Strength: Ultimate (UTS), MPa 520
730
Tensile Strength: Yield (Proof), MPa 190
510

Thermal Properties

Latent Heat of Fusion, J/g 230
300
Maximum Temperature: Mechanical, °C 220
1100
Melting Completion (Liquidus), °C 1050
1440
Melting Onset (Solidus), °C 1040
1390
Specific Heat Capacity, J/kg-K 430
480
Thermal Conductivity, W/m-K 50
16
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 12
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 28
17
Density, g/cm3 8.3
7.7
Embodied Carbon, kg CO2/kg material 3.0
3.4
Embodied Energy, MJ/kg 50
48
Embodied Water, L/kg 380
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
180
Resilience: Unit (Modulus of Resilience), kJ/m3 170
650
Stiffness to Weight: Axial, points 7.6
15
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 17
26
Strength to Weight: Bending, points 17
23
Thermal Diffusivity, mm2/s 14
4.4
Thermal Shock Resistance, points 19
20

Alloy Composition

Aluminum (Al), % 8.5 to 9.5
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
24 to 27
Copper (Cu), % 86 to 89
0
Iron (Fe), % 2.5 to 4.0
62.1 to 70.1
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
1.8 to 2.5
Nickel (Ni), % 0
4.0 to 6.0
Nitrogen (N), % 0
0.15 to 0.25
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.040
Residuals, % 0 to 1.0
0