MakeItFrom.com
Menu (ESC)

C95200 Bronze vs. AISI 201 Stainless Steel

C95200 bronze belongs to the copper alloys classification, while AISI 201 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C95200 bronze and the bottom bar is AISI 201 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
200 to 440
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 29
4.6 to 51
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
77
Tensile Strength: Ultimate (UTS), MPa 520
650 to 1450
Tensile Strength: Yield (Proof), MPa 190
300 to 1080

Thermal Properties

Latent Heat of Fusion, J/g 230
280
Maximum Temperature: Mechanical, °C 220
880
Melting Completion (Liquidus), °C 1050
1410
Melting Onset (Solidus), °C 1040
1370
Specific Heat Capacity, J/kg-K 430
480
Thermal Conductivity, W/m-K 50
15
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 12
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 28
12
Density, g/cm3 8.3
7.7
Embodied Carbon, kg CO2/kg material 3.0
2.6
Embodied Energy, MJ/kg 50
38
Embodied Water, L/kg 380
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
61 to 340
Resilience: Unit (Modulus of Resilience), kJ/m3 170
230 to 2970
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 17
23 to 52
Strength to Weight: Bending, points 17
22 to 37
Thermal Diffusivity, mm2/s 14
4.0
Thermal Shock Resistance, points 19
14 to 32

Alloy Composition

Aluminum (Al), % 8.5 to 9.5
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 86 to 89
0
Iron (Fe), % 2.5 to 4.0
67.5 to 75
Manganese (Mn), % 0
5.5 to 7.5
Nickel (Ni), % 0
3.5 to 5.5
Nitrogen (N), % 0
0 to 0.25
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 1.0
0