MakeItFrom.com
Menu (ESC)

C95200 Bronze vs. AISI 430 Stainless Steel

C95200 bronze belongs to the copper alloys classification, while AISI 430 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C95200 bronze and the bottom bar is AISI 430 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
160
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 29
24
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
77
Tensile Strength: Ultimate (UTS), MPa 520
500
Tensile Strength: Yield (Proof), MPa 190
260

Thermal Properties

Latent Heat of Fusion, J/g 230
280
Maximum Temperature: Mechanical, °C 220
870
Melting Completion (Liquidus), °C 1050
1510
Melting Onset (Solidus), °C 1040
1430
Specific Heat Capacity, J/kg-K 430
480
Thermal Conductivity, W/m-K 50
25
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 12
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 28
8.5
Density, g/cm3 8.3
7.7
Embodied Carbon, kg CO2/kg material 3.0
2.1
Embodied Energy, MJ/kg 50
30
Embodied Water, L/kg 380
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
100
Resilience: Unit (Modulus of Resilience), kJ/m3 170
170
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 17
18
Strength to Weight: Bending, points 17
18
Thermal Diffusivity, mm2/s 14
6.7
Thermal Shock Resistance, points 19
18

Alloy Composition

Aluminum (Al), % 8.5 to 9.5
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 86 to 89
0
Iron (Fe), % 2.5 to 4.0
79.1 to 84
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
0 to 0.75
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 1.0
0