MakeItFrom.com
Menu (ESC)

C95200 Bronze vs. AWS E318

C95200 bronze belongs to the copper alloys classification, while AWS E318 belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C95200 bronze and the bottom bar is AWS E318.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 29
29
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
78
Tensile Strength: Ultimate (UTS), MPa 520
620

Thermal Properties

Latent Heat of Fusion, J/g 230
290
Melting Completion (Liquidus), °C 1050
1440
Melting Onset (Solidus), °C 1040
1400
Specific Heat Capacity, J/kg-K 430
470
Thermal Conductivity, W/m-K 50
15
Thermal Expansion, µm/m-K 18
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 12
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 28
23
Density, g/cm3 8.3
7.9
Embodied Carbon, kg CO2/kg material 3.0
4.4
Embodied Energy, MJ/kg 50
62
Embodied Water, L/kg 380
160

Common Calculations

Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 17
22
Strength to Weight: Bending, points 17
20
Thermal Diffusivity, mm2/s 14
4.0
Thermal Shock Resistance, points 19
16

Alloy Composition

Aluminum (Al), % 8.5 to 9.5
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
17 to 20
Copper (Cu), % 86 to 89
0 to 0.75
Iron (Fe), % 2.5 to 4.0
57.6 to 69.5
Manganese (Mn), % 0
0.5 to 2.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
11 to 14
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 1.0
0