MakeItFrom.com
Menu (ESC)

C95200 Bronze vs. AWS E409Nb

C95200 bronze belongs to the copper alloys classification, while AWS E409Nb belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C95200 bronze and the bottom bar is AWS E409Nb.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 29
23
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
76
Tensile Strength: Ultimate (UTS), MPa 520
500
Tensile Strength: Yield (Proof), MPa 190
380

Thermal Properties

Latent Heat of Fusion, J/g 230
280
Melting Completion (Liquidus), °C 1050
1460
Melting Onset (Solidus), °C 1040
1410
Specific Heat Capacity, J/kg-K 430
480
Thermal Conductivity, W/m-K 50
25
Thermal Expansion, µm/m-K 18
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 12
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 28
13
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 3.0
2.9
Embodied Energy, MJ/kg 50
42
Embodied Water, L/kg 380
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
110
Resilience: Unit (Modulus of Resilience), kJ/m3 170
380
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 17
18
Strength to Weight: Bending, points 17
18
Thermal Diffusivity, mm2/s 14
6.8
Thermal Shock Resistance, points 19
14

Alloy Composition

Aluminum (Al), % 8.5 to 9.5
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0
11 to 14
Copper (Cu), % 86 to 89
0 to 0.75
Iron (Fe), % 2.5 to 4.0
80.2 to 88.5
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0
0 to 0.6
Niobium (Nb), % 0
0.5 to 1.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 1.0
0