MakeItFrom.com
Menu (ESC)

C95200 Bronze vs. EN 1.0455 Cast Steel

C95200 bronze belongs to the copper alloys classification, while EN 1.0455 cast steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C95200 bronze and the bottom bar is EN 1.0455 cast steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 29
25
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 42
73
Tensile Strength: Ultimate (UTS), MPa 520
530
Tensile Strength: Yield (Proof), MPa 190
270

Thermal Properties

Latent Heat of Fusion, J/g 230
250
Maximum Temperature: Mechanical, °C 220
400
Melting Completion (Liquidus), °C 1050
1460
Melting Onset (Solidus), °C 1040
1420
Specific Heat Capacity, J/kg-K 430
470
Thermal Conductivity, W/m-K 50
52
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 12
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 28
1.8
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 3.0
1.4
Embodied Energy, MJ/kg 50
18
Embodied Water, L/kg 380
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
110
Resilience: Unit (Modulus of Resilience), kJ/m3 170
190
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 17
19
Strength to Weight: Bending, points 17
18
Thermal Diffusivity, mm2/s 14
14
Thermal Shock Resistance, points 19
17

Alloy Composition

Aluminum (Al), % 8.5 to 9.5
0
Carbon (C), % 0
0 to 0.23
Copper (Cu), % 86 to 89
0
Iron (Fe), % 2.5 to 4.0
97.9 to 100
Manganese (Mn), % 0
0 to 1.2
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.6
Sulfur (S), % 0
0 to 0.025
Residuals, % 0 to 1.0
0