MakeItFrom.com
Menu (ESC)

C95200 Bronze vs. EN 1.4518 Stainless Steel

C95200 bronze belongs to the copper alloys classification, while EN 1.4518 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C95200 bronze and the bottom bar is EN 1.4518 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 29
34
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
79
Tensile Strength: Ultimate (UTS), MPa 520
490
Tensile Strength: Yield (Proof), MPa 190
210

Thermal Properties

Latent Heat of Fusion, J/g 230
300
Maximum Temperature: Mechanical, °C 220
1000
Melting Completion (Liquidus), °C 1050
1450
Melting Onset (Solidus), °C 1040
1400
Specific Heat Capacity, J/kg-K 430
470
Thermal Conductivity, W/m-K 50
15
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 12
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 28
20
Density, g/cm3 8.3
7.9
Embodied Carbon, kg CO2/kg material 3.0
4.0
Embodied Energy, MJ/kg 50
55
Embodied Water, L/kg 380
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
140
Resilience: Unit (Modulus of Resilience), kJ/m3 170
100
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 17
17
Strength to Weight: Bending, points 17
18
Thermal Diffusivity, mm2/s 14
4.1
Thermal Shock Resistance, points 19
14

Alloy Composition

Aluminum (Al), % 8.5 to 9.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
18 to 20
Copper (Cu), % 86 to 89
0
Iron (Fe), % 2.5 to 4.0
61.4 to 70
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
3.0 to 3.5
Nickel (Ni), % 0
9.0 to 12
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.5
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 1.0
0