MakeItFrom.com
Menu (ESC)

C95200 Bronze vs. EN 1.7386 Steel

C95200 bronze belongs to the copper alloys classification, while EN 1.7386 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C95200 bronze and the bottom bar is EN 1.7386 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
170 to 200
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 29
18 to 21
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
75
Tensile Strength: Ultimate (UTS), MPa 520
550 to 670
Tensile Strength: Yield (Proof), MPa 190
240 to 440

Thermal Properties

Latent Heat of Fusion, J/g 230
270
Maximum Temperature: Mechanical, °C 220
600
Melting Completion (Liquidus), °C 1050
1450
Melting Onset (Solidus), °C 1040
1410
Specific Heat Capacity, J/kg-K 430
480
Thermal Conductivity, W/m-K 50
26
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 12
10

Otherwise Unclassified Properties

Base Metal Price, % relative 28
6.5
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 3.0
2.0
Embodied Energy, MJ/kg 50
28
Embodied Water, L/kg 380
88

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
92 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 170
150 to 490
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 17
20 to 24
Strength to Weight: Bending, points 17
19 to 22
Thermal Diffusivity, mm2/s 14
6.9
Thermal Shock Resistance, points 19
15 to 18

Alloy Composition

Aluminum (Al), % 8.5 to 9.5
0 to 0.040
Carbon (C), % 0
0.080 to 0.15
Chromium (Cr), % 0
8.0 to 10
Copper (Cu), % 86 to 89
0 to 0.3
Iron (Fe), % 2.5 to 4.0
86.8 to 90.5
Manganese (Mn), % 0
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0.25 to 1.0
Sulfur (S), % 0
0 to 0.010
Residuals, % 0 to 1.0
0