MakeItFrom.com
Menu (ESC)

C95200 Bronze vs. Nickel 690

C95200 bronze belongs to the copper alloys classification, while nickel 690 belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C95200 bronze and the bottom bar is nickel 690.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
90
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 29
3.4 to 34
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
79
Tensile Strength: Ultimate (UTS), MPa 520
640 to 990
Tensile Strength: Yield (Proof), MPa 190
250 to 760

Thermal Properties

Latent Heat of Fusion, J/g 230
320
Maximum Temperature: Mechanical, °C 220
1010
Melting Completion (Liquidus), °C 1050
1380
Melting Onset (Solidus), °C 1040
1340
Specific Heat Capacity, J/kg-K 430
470
Thermal Conductivity, W/m-K 50
14
Thermal Expansion, µm/m-K 18
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 12
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 28
50
Density, g/cm3 8.3
8.3
Embodied Carbon, kg CO2/kg material 3.0
8.2
Embodied Energy, MJ/kg 50
120
Embodied Water, L/kg 380
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
31 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 170
160 to 1440
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 17
21 to 33
Strength to Weight: Bending, points 17
20 to 27
Thermal Diffusivity, mm2/s 14
3.5
Thermal Shock Resistance, points 19
16 to 25

Alloy Composition

Aluminum (Al), % 8.5 to 9.5
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
27 to 31
Copper (Cu), % 86 to 89
0 to 0.5
Iron (Fe), % 2.5 to 4.0
7.0 to 11
Manganese (Mn), % 0
0 to 0.5
Nickel (Ni), % 0
58 to 66
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Residuals, % 0 to 1.0
0