MakeItFrom.com
Menu (ESC)

C95200 Bronze vs. C41300 Brass

Both C95200 bronze and C41300 brass are copper alloys. They have 88% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C95200 bronze and the bottom bar is C41300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 29
2.0 to 44
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 42
42
Tensile Strength: Ultimate (UTS), MPa 520
300 to 630
Tensile Strength: Yield (Proof), MPa 190
120 to 570

Thermal Properties

Latent Heat of Fusion, J/g 230
200
Maximum Temperature: Mechanical, °C 220
180
Melting Completion (Liquidus), °C 1050
1040
Melting Onset (Solidus), °C 1040
1010
Specific Heat Capacity, J/kg-K 430
380
Thermal Conductivity, W/m-K 50
130
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
30
Electrical Conductivity: Equal Weight (Specific), % IACS 12
31

Otherwise Unclassified Properties

Base Metal Price, % relative 28
29
Density, g/cm3 8.3
8.7
Embodied Carbon, kg CO2/kg material 3.0
2.7
Embodied Energy, MJ/kg 50
44
Embodied Water, L/kg 380
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
11 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 170
69 to 1440
Stiffness to Weight: Axial, points 7.6
7.2
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 17
9.6 to 20
Strength to Weight: Bending, points 17
11 to 19
Thermal Diffusivity, mm2/s 14
40
Thermal Shock Resistance, points 19
11 to 22

Alloy Composition

Aluminum (Al), % 8.5 to 9.5
0
Copper (Cu), % 86 to 89
89 to 93
Iron (Fe), % 2.5 to 4.0
0 to 0.050
Lead (Pb), % 0
0 to 0.1
Tin (Sn), % 0
0.7 to 1.3
Zinc (Zn), % 0
5.1 to 10.3
Residuals, % 0
0 to 0.5