MakeItFrom.com
Menu (ESC)

C95200 Bronze vs. C66200 Brass

Both C95200 bronze and C66200 brass are copper alloys. They have 88% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C95200 bronze and the bottom bar is C66200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 29
8.0 to 15
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 42
42
Tensile Strength: Ultimate (UTS), MPa 520
450 to 520
Tensile Strength: Yield (Proof), MPa 190
410 to 480

Thermal Properties

Latent Heat of Fusion, J/g 230
200
Maximum Temperature: Mechanical, °C 220
180
Melting Completion (Liquidus), °C 1050
1070
Melting Onset (Solidus), °C 1040
1030
Specific Heat Capacity, J/kg-K 430
390
Thermal Conductivity, W/m-K 50
150
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
35
Electrical Conductivity: Equal Weight (Specific), % IACS 12
36

Otherwise Unclassified Properties

Base Metal Price, % relative 28
29
Density, g/cm3 8.3
8.7
Embodied Carbon, kg CO2/kg material 3.0
2.7
Embodied Energy, MJ/kg 50
43
Embodied Water, L/kg 380
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
40 to 66
Resilience: Unit (Modulus of Resilience), kJ/m3 170
760 to 1030
Stiffness to Weight: Axial, points 7.6
7.2
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 17
14 to 17
Strength to Weight: Bending, points 17
15 to 16
Thermal Diffusivity, mm2/s 14
45
Thermal Shock Resistance, points 19
16 to 18

Alloy Composition

Aluminum (Al), % 8.5 to 9.5
0
Copper (Cu), % 86 to 89
86.6 to 91
Iron (Fe), % 2.5 to 4.0
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Nickel (Ni), % 0
0.3 to 1.0
Phosphorus (P), % 0
0.050 to 0.2
Tin (Sn), % 0
0.2 to 0.7
Zinc (Zn), % 0
6.5 to 12.9
Residuals, % 0
0 to 0.5