MakeItFrom.com
Menu (ESC)

C95200 Bronze vs. C67500 Bronze

Both C95200 bronze and C67500 bronze are copper alloys. They have 60% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C95200 bronze and the bottom bar is C67500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
100
Elongation at Break, % 29
14 to 33
Poisson's Ratio 0.34
0.3
Shear Modulus, GPa 42
40
Tensile Strength: Ultimate (UTS), MPa 520
430 to 580
Tensile Strength: Yield (Proof), MPa 190
170 to 370

Thermal Properties

Latent Heat of Fusion, J/g 230
170
Maximum Temperature: Mechanical, °C 220
120
Melting Completion (Liquidus), °C 1050
890
Melting Onset (Solidus), °C 1040
870
Specific Heat Capacity, J/kg-K 430
390
Thermal Conductivity, W/m-K 50
110
Thermal Expansion, µm/m-K 18
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
24
Electrical Conductivity: Equal Weight (Specific), % IACS 12
27

Otherwise Unclassified Properties

Base Metal Price, % relative 28
23
Density, g/cm3 8.3
8.0
Embodied Carbon, kg CO2/kg material 3.0
2.8
Embodied Energy, MJ/kg 50
47
Embodied Water, L/kg 380
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
61 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 170
130 to 650
Stiffness to Weight: Axial, points 7.6
7.3
Stiffness to Weight: Bending, points 19
20
Strength to Weight: Axial, points 17
15 to 20
Strength to Weight: Bending, points 17
16 to 19
Thermal Diffusivity, mm2/s 14
34
Thermal Shock Resistance, points 19
14 to 19

Alloy Composition

Aluminum (Al), % 8.5 to 9.5
0 to 0.25
Copper (Cu), % 86 to 89
57 to 60
Iron (Fe), % 2.5 to 4.0
0.8 to 2.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0
0.050 to 0.5
Tin (Sn), % 0
0.5 to 1.5
Zinc (Zn), % 0
35.1 to 41.7
Residuals, % 0
0 to 0.5