MakeItFrom.com
Menu (ESC)

C95200 Bronze vs. N10675 Nickel

C95200 bronze belongs to the copper alloys classification, while N10675 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C95200 bronze and the bottom bar is N10675 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
220
Elongation at Break, % 29
47
Poisson's Ratio 0.34
0.31
Shear Modulus, GPa 42
85
Tensile Strength: Ultimate (UTS), MPa 520
860
Tensile Strength: Yield (Proof), MPa 190
400

Thermal Properties

Latent Heat of Fusion, J/g 230
320
Maximum Temperature: Mechanical, °C 220
910
Melting Completion (Liquidus), °C 1050
1420
Melting Onset (Solidus), °C 1040
1370
Specific Heat Capacity, J/kg-K 430
380
Thermal Conductivity, W/m-K 50
11
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 12
1.2

Otherwise Unclassified Properties

Base Metal Price, % relative 28
80
Density, g/cm3 8.3
9.3
Embodied Carbon, kg CO2/kg material 3.0
16
Embodied Energy, MJ/kg 50
210
Embodied Water, L/kg 380
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
330
Resilience: Unit (Modulus of Resilience), kJ/m3 170
350
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 19
22
Strength to Weight: Axial, points 17
26
Strength to Weight: Bending, points 17
22
Thermal Diffusivity, mm2/s 14
3.1
Thermal Shock Resistance, points 19
26

Alloy Composition

Aluminum (Al), % 8.5 to 9.5
0 to 0.5
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0
1.0 to 3.0
Cobalt (Co), % 0
0 to 3.0
Copper (Cu), % 86 to 89
0 to 0.2
Iron (Fe), % 2.5 to 4.0
1.0 to 3.0
Manganese (Mn), % 0
0 to 3.0
Molybdenum (Mo), % 0
27 to 32
Nickel (Ni), % 0
51.3 to 71
Niobium (Nb), % 0
0 to 0.2
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.1
Sulfur (S), % 0
0 to 0.010
Tantalum (Ta), % 0
0 to 0.2
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 0
0 to 3.0
Vanadium (V), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0 to 1.0
0