MakeItFrom.com
Menu (ESC)

C95200 Bronze vs. S17700 Stainless Steel

C95200 bronze belongs to the copper alloys classification, while S17700 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C95200 bronze and the bottom bar is S17700 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
180 to 430
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 29
1.0 to 23
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
76
Tensile Strength: Ultimate (UTS), MPa 520
1180 to 1650
Tensile Strength: Yield (Proof), MPa 190
430 to 1210

Thermal Properties

Latent Heat of Fusion, J/g 230
290
Maximum Temperature: Mechanical, °C 220
890
Melting Completion (Liquidus), °C 1050
1440
Melting Onset (Solidus), °C 1040
1400
Specific Heat Capacity, J/kg-K 430
480
Thermal Conductivity, W/m-K 50
15
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 12
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 28
13
Density, g/cm3 8.3
7.7
Embodied Carbon, kg CO2/kg material 3.0
2.8
Embodied Energy, MJ/kg 50
40
Embodied Water, L/kg 380
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
15 to 210
Resilience: Unit (Modulus of Resilience), kJ/m3 170
460 to 3750
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 17
42 to 59
Strength to Weight: Bending, points 17
32 to 40
Thermal Diffusivity, mm2/s 14
4.1
Thermal Shock Resistance, points 19
39 to 54

Alloy Composition

Aluminum (Al), % 8.5 to 9.5
0.75 to 1.5
Carbon (C), % 0
0 to 0.090
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 86 to 89
0
Iron (Fe), % 2.5 to 4.0
70.5 to 76.8
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
6.5 to 7.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 1.0
0