MakeItFrom.com
Menu (ESC)

C95300 Bronze vs. C95820 Bronze

Both C95300 bronze and C95820 bronze are copper alloys. They have a moderately high 91% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C95300 bronze and the bottom bar is C95820 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 14 to 25
15
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 42
44
Tensile Strength: Ultimate (UTS), MPa 520 to 610
730
Tensile Strength: Yield (Proof), MPa 190 to 310
310

Thermal Properties

Latent Heat of Fusion, J/g 230
230
Maximum Temperature: Mechanical, °C 220
230
Melting Completion (Liquidus), °C 1050
1080
Melting Onset (Solidus), °C 1040
1020
Specific Heat Capacity, J/kg-K 440
440
Thermal Conductivity, W/m-K 63
38
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 14
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 28
29
Density, g/cm3 8.3
8.3
Embodied Carbon, kg CO2/kg material 3.1
3.5
Embodied Energy, MJ/kg 52
56
Embodied Water, L/kg 390
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 73 to 100
86
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 420
400
Stiffness to Weight: Axial, points 7.5
8.0
Stiffness to Weight: Bending, points 19
20
Strength to Weight: Axial, points 17 to 21
24
Strength to Weight: Bending, points 17 to 19
22
Thermal Diffusivity, mm2/s 17
11
Thermal Shock Resistance, points 19 to 22
25

Alloy Composition

Aluminum (Al), % 9.0 to 11
9.0 to 10
Copper (Cu), % 86.5 to 90.2
77.5 to 82.5
Iron (Fe), % 0.8 to 1.5
4.0 to 5.0
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0
4.5 to 5.8
Silicon (Si), % 0
0 to 0.1
Tin (Sn), % 0
0 to 0.020
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.8