MakeItFrom.com
Menu (ESC)

C95300 Bronze vs. N07716 Nickel

C95300 bronze belongs to the copper alloys classification, while N07716 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C95300 bronze and the bottom bar is N07716 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 14 to 25
34
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 42
78
Tensile Strength: Ultimate (UTS), MPa 520 to 610
860
Tensile Strength: Yield (Proof), MPa 190 to 310
350

Thermal Properties

Latent Heat of Fusion, J/g 230
320
Maximum Temperature: Mechanical, °C 220
980
Melting Completion (Liquidus), °C 1050
1480
Melting Onset (Solidus), °C 1040
1430
Specific Heat Capacity, J/kg-K 440
440
Thermal Conductivity, W/m-K 63
11
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 14
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 28
75
Density, g/cm3 8.3
8.5
Embodied Carbon, kg CO2/kg material 3.1
13
Embodied Energy, MJ/kg 52
190
Embodied Water, L/kg 390
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 73 to 100
240
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 420
300
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 17 to 21
28
Strength to Weight: Bending, points 17 to 19
24
Thermal Diffusivity, mm2/s 17
2.8
Thermal Shock Resistance, points 19 to 22
24

Alloy Composition

Aluminum (Al), % 9.0 to 11
0 to 0.35
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
19 to 22
Copper (Cu), % 86.5 to 90.2
0
Iron (Fe), % 0.8 to 1.5
0 to 11.3
Manganese (Mn), % 0
0 to 0.2
Molybdenum (Mo), % 0
7.0 to 9.5
Nickel (Ni), % 0
59 to 63
Niobium (Nb), % 0
2.8 to 4.0
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0
0 to 0.2
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
1.0 to 1.6
Residuals, % 0 to 1.0
0