MakeItFrom.com
Menu (ESC)

C95300 Bronze vs. S33228 Stainless Steel

C95300 bronze belongs to the copper alloys classification, while S33228 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is C95300 bronze and the bottom bar is S33228 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120 to 170
190
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 14 to 25
34
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
79
Tensile Strength: Ultimate (UTS), MPa 520 to 610
570
Tensile Strength: Yield (Proof), MPa 190 to 310
210

Thermal Properties

Latent Heat of Fusion, J/g 230
310
Maximum Temperature: Mechanical, °C 220
1100
Melting Completion (Liquidus), °C 1050
1410
Melting Onset (Solidus), °C 1040
1360
Specific Heat Capacity, J/kg-K 440
470
Thermal Expansion, µm/m-K 18
16

Otherwise Unclassified Properties

Base Metal Price, % relative 28
37
Density, g/cm3 8.3
8.0
Embodied Carbon, kg CO2/kg material 3.1
6.2
Embodied Energy, MJ/kg 52
89
Embodied Water, L/kg 390
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 73 to 100
150
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 420
110
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 17 to 21
20
Strength to Weight: Bending, points 17 to 19
19
Thermal Shock Resistance, points 19 to 22
13

Alloy Composition

Aluminum (Al), % 9.0 to 11
0 to 0.025
Carbon (C), % 0
0.040 to 0.080
Cerium (Ce), % 0
0.050 to 0.1
Chromium (Cr), % 0
26 to 28
Copper (Cu), % 86.5 to 90.2
0
Iron (Fe), % 0.8 to 1.5
36.5 to 42.3
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
31 to 33
Niobium (Nb), % 0
0.6 to 1.0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.3
Sulfur (S), % 0
0 to 0.015
Residuals, % 0 to 1.0
0